Air-sea dimethylsulfide (DMS) gas transfer in the North Atlantic: Evidence for limited interfacial gas exchange at high wind speed

68Citations
Citations of this article
82Readers
Mendeley users who have this article in their library.

Abstract

Shipboard measurements of eddy covariance dimethylsulfide (DMS) air-sea fluxes and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k660) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s -1. At higher wind speeds the relationship between k660 and wind speed weakens. At high winds, measured DMS fluxes were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible heat did not exhibit this effect. The apparent suppression of air-sea gas flux at higher wind speeds appears to be related to sea state, as determined from shipboard wave measurements. These observations are consistent with the idea that long waves suppress near-surface water-side turbulence, and decrease interfacial gas transfer. This effect may be more easily observed for DMS than for less soluble gases, such as CO2, because the air-sea exchange of DMS is controlled by interfacial rather than bubble-mediated gas transfer under high wind speed conditions. © 2013 Author(s).

Cite

CITATION STYLE

APA

Bell, T. G., De Bruyn, W., Miller, S. D., Ward, B., Christensen, K., & Saltzman, E. S. (2013). Air-sea dimethylsulfide (DMS) gas transfer in the North Atlantic: Evidence for limited interfacial gas exchange at high wind speed. Atmospheric Chemistry and Physics, 13(21), 11073–11087. https://doi.org/10.5194/acp-13-11073-2013

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free