A Bayesian Lasso via reversible-jump MCMC

13Citations
Citations of this article
51Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Variable selection is a topic of great importance in high-dimensional statistical modeling and has a wide range of real-world applications. Many variable selection techniques have been proposed in the context of linear regression, and the Lasso model is probably one of the most popular penalized regression techniques. In this paper, we propose a new, fully hierarchical, Bayesian version of the Lasso model by employing flexible sparsity promoting priors. To obtain the Bayesian Lasso estimate, a reversible-jump MCMC algorithm is developed for joint posterior inference over both discrete and continuous parameter spaces. Simulations demonstrate that the proposed RJ-MCMC-based Bayesian Lasso yields smaller estimation errors and more accurate sparsity pattern detection when compared with state-of-the-art optimization-based Lasso-type methods, a standard Gibbs sampler-based Bayesian Lasso and the Binomial-Gaussian prior model. To demonstrate the applicability and estimation stability of the proposed Bayesian Lasso, we examine a benchmark diabetes data set and real functional Magnetic Resonance Imaging data. As an extension of the proposed RJ-MCMC framework, we also develop an MCMC-based algorithm for the Binomial-Gaussian prior model and illustrate its improved performance over the non-Bayesian estimate via simulations. © 2011 Elsevier B.V. All rights reserved.

Cite

CITATION STYLE

APA

Chen, X., Jane Wang, Z., & McKeown, M. J. (2011). A Bayesian Lasso via reversible-jump MCMC. Signal Processing, 91(8), 1920–1932. https://doi.org/10.1016/j.sigpro.2011.02.014

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free