Sign up & Download
Sign in

Bayesian statistical modeling of spatially correlated error structure in atmospheric tracer inverse analysis

by C. Mukherjee, P. S. Kasibhatla, M. West
Atmospheric Chemistry and Physics ()

Abstract

Abstract. Inverse modeling applications in atmospheric chemistry are increasingly addressing the challenging statistical issues of data synthesis by adopting refined statistical analysis methods. This paper advances this line of research by addressing several central questions in inverse modeling, focusing specifically on Bayesian statistical computation. Motivated by problems of refining bottom-up estimates of source/sink fluxes of trace gas and aerosols based on increasingly high-resolution satellite retrievals of atmospheric chemical concentrations, we address head-on the need for integrating formal spatial statistical methods of residual error structure in global scale inversion models. We do this using analytically and computationally tractable spatial statistical models, know as conditional autoregressive spatial models, as components of a global inversion framework. We develop Markov chain Monte Carlo methods to explore and fit these spatial structures in an overall statistical framework that simultaneously estimates source fluxes. Additional aspects of the study extend the statistical framework to utilize priors in a more physically realistic manner, and to formally address and deal with missing data in satellite retrievals. We demonstrate the analysis in the context of inferring carbon monoxide (CO) sources constrained by satellite retrievals of column CO from the Measurement of Pollution in the Troposphere (MOPITT) instrument on the TERRA satellite, paying special attention to evaluating performance of the inverse approach using various statistical diagnostic metrics. This is developed using synthetic data generated to resemble MOPITT data to define a~proof-of-concept and model assessment, and then in analysis of real MOPITT data.

Cite this document (BETA)

Readership Statistics

17 Readers on Mendeley
by Discipline
 
 
 
by Academic Status
 
24% Post Doc
 
24% Researcher (at an Academic Institution)
 
12% Student (Bachelor)
by Country
 
6% United Kingdom
 
6% United States

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Already have an account? Sign in