A bicycle can be self-stable without gyroscopic or caster effects

151Citations
Citations of this article
469Readers
Mendeley users who have this article in their library.
Get full text

Abstract

A riderless bicycle can automatically steer itself so as to recover from falls. The common view is that this self-steering is caused by gyroscopic precession of the front wheel, or by the wheel contact trailing like a caster behind the steer axis. We show that neither effect is necessary for self-stability. Using linearized stability calculations as a guide, we built a bicycle with extra counter-rotating wheels (canceling the wheel spin angular momentum) and with its front-wheel ground-contact forward of the steer axis (making the trailing distance negative). When laterally disturbed from rolling straight, this bicycle automatically recovers to upright travel. Our results show that various design variables, like the front mass location and the steer axis tilt, contribute to stability in complex interacting ways.

Cite

CITATION STYLE

APA

Kooijman, J. D. G., Meijaard, J. P., Papadopoulos, J. M., Ruina, A., & Schwab, A. L. (2011). A bicycle can be self-stable without gyroscopic or caster effects. Science, 332(6027), 339–342. https://doi.org/10.1126/science.1201959

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free