Sign up & Download
Sign in

Chemical evolution of organic aerosol in Los Angeles during the CalNex 2010 study

by R. Holzinger, A. H. Goldstein, P. L. Hayes, J. L. Jimenez, J. Timkovsky
Atmospheric Chemistry and Physics ()

Abstract

During the CalNex study (15 May to 16 June 2010) a large suite of instruments was operated at the Los Angeles area ground supersite to characterize the sources and atmospheric processing of atmospheric pollution. The thermal-desorption proton-transfer-reaction mass-spectrometer (TD-PTR-MS) was deployed to an urban area for the first time and detected 691 organic ions in aerosol samples, the mean total concentration of which was estimated as 3.3 mu g m(-3). Based on comparison to total organic aerosol (OA) measurements, we estimate that approximately 50% of the OA mass at this site was directly measured by the TD-PTR-MS. Based on correlations with aerosol mass spectrometer (AMS) OA components, the ions were grouped to represent hydrocarbon-like OA (HOA), local OA (LOA), semi-volatile oxygenated OA (SV-OOA), and low volatility oxygenated OA (LV-OOA). Mass spectra and thermograms of the ion groups are mostly consistent with the assumed sources and/or photochemical origin of the OA components. The mass spectra of ions representing the primary components HOA and LOA included the highest m/z, consistent with their higher resistance to thermal decomposition, and they were volatilized at lower temperatures (similar to 150 degrees C). Photochemical ageing weakens C-C bond strengths (also resulting in chemical fragmentation), and produces species of lower volatility (through the addition of functional groups). Accordingly the mass spectra of ions representing the oxidized OA components (SV-OOA, and LV-OOA) lack the highest masses and they are volatilized at higher temperatures (250-300 degrees C). Chemical parameters like mean carbon number ((n(C)) over bar), mean carbon oxidation state ((OSC) over bar), and the atomic ratios O/C and H/C of the ion groups are consistent with the expected sources and photochemical processing of the aerosol components. Our data suggest that chemical fragmentation gains importance over functionalization as photochemical age of OA increases. Surprisingly, the photochemical age of OA decreases during the daytime hours, demonstrating the importance of rapid production of new (photochemically young) SV-OOA during daytime. The PTR detects higher organic N concentrations than the AMS, the reasons for which are not well understood and cannot be explained by known artifacts related to PTR or the AMS. The median atomic N/C ratio (6.4 %) of the ion group representing LV-OOA is a factor 2 higher than N/C of any other ion group. This suggests a multiphase chemical source involving ammonium ions is contributing to LV-OOA.

Cite this document (BETA)

Readership Statistics

19 Readers on Mendeley
by Discipline
 
 
 
by Academic Status
 
58% Ph.D. Student
 
11% Doctoral Student
 
11% Post Doc
by Country
 
11% United States
 
5% United Kingdom

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Already have an account? Sign in