Derivation of some modern arc magmas by melting of young subducted lithosphere

N/ACitations
Citations of this article
435Readers
Mendeley users who have this article in their library.
Get full text

Abstract

MOST volcanic rocks in modern island and continental arcs are probably derived from melting of the mantle wedge, induced by hydrous fluids released during dehydration reactions in the subducted lithosphere1. Arc tholeiitic and calc-alkaline basaltic magmas are produced by partial melting of the mantle, and then evolve by crystal fractionation (with or without assimilation and magma mixing) to more silicic magmas2 - basalt, andesite, dacite and rhyolite suites. Although most arc magmas are generated by these petrogenetic processes, rocks with the geochemical characteristics of melts derived directly from the subducted lithosphere are present in some modern arcs where relatively young and hot lithosphere is being subducted. These andesites, dacites and sodic rhyolites (dacites seem to be the most common products) or their intrusive equivalents (tonalites and trondhjemites) are usually not associated with parental basaltic magmas3. Here we show that the trace-element geochemistry of these magmas (termed 'adakites') is consistent with a derivation by partial melting of the subducted slab, and in particular that subducting lithosphere younger than 25 Myr seems to be required for slab melting to occur. © 1990 Nature Publishing Group.

Cite

CITATION STYLE

APA

Defant, M. J., & Drummond, M. S. (1990). Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294), 662–665. https://doi.org/10.1038/347662a0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free