Early-onset Alzheimer disease and candidate risk genes involved in endolysosomal transport

33Citations
Citations of this article
171Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

IMPORTANCE: Mutations in APP, PSEN1, and PSEN2lead to early-onset Alzheimer disease (EOAD) but account for only approximately 11% of EOAD overall, leaving most of the genetic risk for the most severe form of Alzheimer disease unexplained. This extreme phenotype likely harbors highly penetrant risk variants, making it primed for discovery of novel risk genes and pathways for AD. OBJECTIVE: To search for rare variants contributing to the risk for EOAD. DESIGN, SETTING, AND PARTICIPANTS: In this case-control study, whole-exome sequencing (WES) was performed in 51 non-Hispanic white (NHW) patients with EOAD (age at onset <65 years) and 19 Caribbean Hispanic families previously screened as negative for established APP, PSEN1, and PSEN2 causal variants. Participants were recruited from John P. Hussman Institute for Human Genomics, Case Western Reserve University, and Columbia University. Rare, deleterious, nonsynonymous, or loss-of-function variants were filtered to identify variants in known and suspected AD genes, variants in multiple unrelated NHW patients, variants present in 19 Hispanic EOAD WES families, and genes with variants in multiple unrelated NHW patients. These variants/genes were tested for association in an independent cohort of 1524 patients with EOAD, 7046 patients with late-onset AD (LOAD), and 7001 cognitively intact controls (age at examination, >65 years) from the Alzheimer’s Disease Genetics Consortium. The study was conducted from January 21, 2013, to October 13, 2016. MAIN OUTCOMES AND MEASURES: Alzheimer disease diagnosed according to standard National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer Disease and Related Disorders Association criteria. Association between Alzheimer disease and genetic variants and genes was measured using logistic regression and sequence kernel association test–optimal gene tests, respectively. RESULTS: Of the 1524 NHW patients with EOAD, 765 (50.2%) were women and mean (SD) age was 60.0 (4.9) years; of the 7046 NHW patients with LOAD, 4171 (59.2%) were women and mean (SD) age was 77.4 (8.6) years; and of the 7001 NHW controls, 4215 (60.2%) were women and mean (SD) age was 77.4 (8.6) years. The gene PSD2, for which multiple unrelated NHW cases had rare missense variants, was significantly associated with EOAD (P = 2.05 × 10−6; Bonferroni-corrected Pvalue [BP] = 1.3 × 10−3) and LOAD (P = 6.22 × 10−6; BP = 4.1 × 10−3). A missense variant in TCIRG1, present in a NHW patient and segregating in 3 cases of a Hispanic family, was more frequent in EOAD cases (odds ratio [OR], 2.13; 95% CI, 0.99-4.55; P = .06; BP = 0.413), and significantly associated with LOAD (OR, 2.23; 95% CI, 1.37-3.62; P = 7.2 × 10−4; BP = 5.0 × 10−3). A missense variant in the LOAD risk gene RIN3showed suggestive evidence of association with EOAD after Bonferroni correction (OR, 4.56; 95% CI, 1.26-16.48; P = .02, BP = 0.091). In addition, a missense variant in RUFY1identified in 2 NHW EOAD cases showed suggestive evidence of an association with EOAD as well (OR, 18.63; 95% CI, 1.62-213.45; P = .003; BP = 0.129). CONCLUSIONS AND RELEVANCE:      The genes PSD2, TCIRG1, RIN3, and RUFY1 all may be involved in endolysosomal transport—a process known to be important to development of AD. Furthermore, this study identified shared risk genes between EOAD and LOAD similar to previously reported genes, such as SORL1, PSEN2, and TREM2.

Cite

CITATION STYLE

APA

Kunkle, B. W., Vardarajan, B. N., Naj, A. C., Whitehead, P. L., Rolati, S., Slifer, S., … Pericak-Vance, M. A. (2017). Early-onset Alzheimer disease and candidate risk genes involved in endolysosomal transport. JAMA Neurology, 74(9), 1113–1122. https://doi.org/10.1001/jamaneurol.2017.1518

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free