Efficient primer design algorithms

67Citations
Citations of this article
105Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Motivation. Primer design involves various parameters such as string-based alignment scores, melting temperature, primer length and GC content. This entails a design approach from multicriteria decision making. Values of some of the criteria are easy to compute while others require intense calculations. Results. The reference point method was found to be tractable for trading-off between deviations from ideal values of all the criteria. Some criteria computations are based on dynamic programs with value iteration whose run time can be bounded by a low-degree polynomial. For designing standard PCR primers, the scheme offers in a relative gain in computing speed of up to 50 : 1 over ad-hoc computational methods. Single PCR primer pairs have been used as model systems in order to simplify the quantization of the computational acceleration factors. The program has been structured so as to facilitate the analysis of large numbers of primer pairs with minor modifications. The scheme significantly increases primer design throughput which in turn facilitates the use of oligonucleotides in a wide range of applications including: multiplex PCR and other nucleic acid-based amplification systems, as well as in zip code targeting, oligonucleotide microarrays and nucleic acid-based nanoengineering.

Cite

CITATION STYLE

APA

Kämpke, T., Kieninger, M., & Mecklenburg, M. (2001). Efficient primer design algorithms. Bioinformatics, 17(3), 214–225. https://doi.org/10.1093/bioinformatics/17.3.214

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free