Sign up & Download
Sign in

Eimeria tenella: Identification of secretory and surface proteins from expressed sequence tags

by Christian Klotz, Richard J. Marh??fer, Paul M. Selzer, Richard Lucius, Thomas Pogonka
Experimental Parasitology ()

Abstract

To identify new vaccine candidates, Eimeria tenella expressed sequence tags (ESTs) from public databases were analysed for secretory molecules with an especially developed automated in silico strategy termed DNAsignalP. A total of 12,187 ESTs were clustered into 2881 contigs followed by a blastx search, which resulted in a significant number of E. tenella contigs with homologies to entries in public databases. Amino acid sequences of appropriate homologous proteins were analysed for the occurrence of an N-terminal signal sequence using the algorithm signalP. The resulting list of 84 entries comprised 51 contigs whose deduced proteins showed homologies to proteins of apicomplexan parasites. Based on function or localisation, we selected candidate proteins classified as (i) secreted proteins of Apicomplexa parasites, (ii) secreted enzymes, and (iii) transport and signalling proteins. To verify our strategy experimentally, we used a functional complementation system in yeast. For five selected candidate proteins we found that these were indeed secreted. Our approach thus represents an efficient method to identify secretory and surface proteins out of EST databases. ?? 2005 Elsevier Inc. All rights reserved.

Cite this document (BETA)

Available from Experimental Parasitology
Page 1
hidden
Page 2
hidden

Readership Statistics

3 Readers on Mendeley
by Discipline
 
 
by Academic Status
 
33% Student (Master)
 
33% Ph.D. Student
 
33% Researcher (at a non-Academic Institution)

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Already have an account? Sign in