Sign up & Download
Sign in

Examining the impact of heterogeneous nitryl chloride production on air quality across the United States

by G. Sarwar, H. Simon, P. Bhave, G. Yarwood
Atmospheric Chemistry and Physics ()

Abstract

The heterogeneous hydrolysis of dinitrogen pentoxide (N+ADw-inf+AD4-2+ADw-/ inf+AD4-O+ADw-inf+AD4-5+ADw-/inf+AD4-) has typically been modeled as only producing nitric acid. However, recent field studies have confirmed that the presence of particulate chloride alters the reaction product to produce nitryl chloride (ClNO+ADw-inf+AD4-2+ADw-/inf+AD4-) which undergoes photolysis to generate chlorine atoms and nitrogen dioxide (NO+ADw-inf+AD4-2+ADw-/inf+AD4-). Both chlorine and NO+ADw-inf+AD4-2+ADw-/inf+AD4- affect atmospheric chemistry and air quality. We present an updated gas-phase chlorine mechanism that can be combined with the Carbon Bond 05 mechanism and incorporate the combined mechanism into the Community Multiscale Air Quality (CMAQ) modeling system. We then update the current model treatment of heterogeneous hydrolysis of N+ADw-inf+AD4-2+ADw-/inf+AD4-O+ADw-inf+AD4-5+ADw-/inf+AD4- to include ClNO+ADw-inf+AD4-2+ADw-/inf+AD4- as a product. The model, in combination with a comprehensive inventory of chlorine compounds, reactive nitrogen, particulate matter, and organic compounds, is used to evaluate the impact of the heterogeneous ClNO+ADw-inf+AD4-2+ADw-/inf+AD4- production on air quality across the United States for the months of February and September in 2006. The heterogeneous production increases ClNO+ADw-inf+AD4-2+ADw-/inf+AD4- in coastal as well as many in-land areas in the United States. Particulate chloride derived from sea-salts, anthropogenic sources, and forest fires activates the heterogeneous production of ClNO+ADw-inf+AD4-2+ADw-/inf+AD4-. With current estimates of tropospheric emissions, it modestly enhances monthly mean 8-h ozone (up to 1-2 ppbv or 3-4+ACU-) but causes large increases (up to 13 ppbv) in isolated episodes. This chemistry also substantially reduces the mean total nitrate by up to 0.8-2.0 +ACY-mu+ADs-g m+ADw-sup+AD4--3+ADw-/sup+AD4- or 11-21+ACU-. Modeled ClNO+ADw-inf+AD4-2+ADw-/inf+AD4- accounts for up to 6+ACU- of the monthly mean total reactive nitrogen. Sensitivity results of the model suggest that heterogeneous production of ClNO+ADw-inf+AD4-2+ADw-/inf+AD4- can further increase O+ADw-inf+AD4-3+ADw-/inf+AD4- and reduce TNO+ADw-inf+AD4-3+ADw- /inf+AD4- if elevated particulate-chloride levels are present in the atmosphere. © Author(s) 2012.

Cite this document (BETA)

Readership Statistics

16 Readers on Mendeley
by Discipline
 
 
 
by Academic Status
 
31% Ph.D. Student
 
25% Post Doc
 
13% Researcher (at a non-Academic Institution)
by Country
 
19% United States
 
13% United Kingdom

Tags

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Already have an account? Sign in