Sign up & Download
Sign in

Exploring the atmospheric chemistry of nitrous acid (HONO) at a rural site in Southern China

by X. Li, T. Brauers, R. H??seler, B. Bohn, H. Fuchs, A. Hofzumahaus, F. Holland, S. Lou, K. D. Lu, F. Rohrer, M. Hu, L. M. Zeng, Y. H. Zhang, R. M. Garland, H. Su, A. Nowak, A. Wiedensohler, N. Takegawa, M. Shao, A. Wahner show all authors
Atmospheric Chemistry and Physics ()

Abstract

We performed measurements of nitrous acid (HONO) during the PRIDE-PRD2006 campaign in the Pearl River Delta region 60 km north of Guangzhou, China, for 4 weeks in June 2006. HONO was measured by a LOPAP in-situ instrument which was setup in one of the campaign supersites along with a variety of instruments measuring hydroxyl radicals, trace gases, aerosols, and meteorological parameters. Maximum diurnal HONO mixing ratios of 1-5 ppb were observed during the nights. We found that the nighttime build-up of HONO can be attributed to the heterogeneous NO2 to HONO conversion on ground surfaces and the OH + NO reaction. In addition to elevated nighttime mixing ratios, measured noontime values of approximate to 200 ppt indicate the existence of a daytime source higher than the OH + NO -> HONO reaction. Using the simultaneously recorded OH, NO, and HONO photolysis frequency, a daytime additional source strength of HONO (P-M) was calculated to be 0.77 ppb h(-1) on average. This value compares well to previous measurements in other environments. Our analysis of P-M provides evidence that the photolysis of HNO3 adsorbed on ground surfaces contributes to the HONO formation.

Cite this document (BETA)

Readership Statistics

20 Readers on Mendeley
by Discipline
 
 
 
by Academic Status
 
30% Ph.D. Student
 
30% Post Doc
 
15% Researcher (at a non-Academic Institution)
by Country
 
10% United States
 
5% Japan
 
5% China

Tags

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Already have an account? Sign in