Sign up & Download
Sign in

Fish out of water: Terrestrial jumping by fully aquatic fishes

by Alice C. Gibb, Miriam A. Ashley-Ross, Cinnamon M. Pace, John H. Long
Journal of Experimental Zoology Part A: Ecological Genetics and Physiology ()

Abstract

Many teleosts that live at the water's edge will voluntarily strand themselves to evade predators or escape poor conditions-this behavior has been repeatedly observed in the field for killifishes (Cyprinodontiformes). Although most killifishes are considered fully aquatic and possess no obvious morphological specializations to facilitate terrestrial locomotion, individuals from several different species have been observed moving across land via a "tail flip" behavior that generates a terrestrial jump. Like aquatic fast starts, terrestrial jumps are produced by high-curvature lateral flexion of the body (stage one), followed by contralateral flexion of the posterior body (stage two). Here, terrestrial jumps and aquatic fast starts are quantified for two littoral teleosts: Gambusia affinis (a killifish, Cyprinodontiformes) and Danio rerio (a small carp, Cypriniformes) to determine if the tail flip is produced by other (non-killifish) teleosts and to test the null hypothesis that the tail flip is a fast start behavior, performed on land. Both Danio and Gambusia produce tail flip-driven terrestrial jumps, which are kinematically distinct from aquatic escapes and characterized by (1) a prolonged stage one, during which the fish bends, lifting and rolling the center of mass over the caudal peduncle, and (2) a relatively brief stage two, wherein the caudal peduncle pushes against the substrate to launch the fish into the aerial phase. The ability of these fully aquatic fishes to employ the same structure to produce distinct kinematic patterns in disparate environments suggests that a new behavior has evolved to facilitate movement on land and that anatomical novelty is not a prerequisite for effective terrestrial locomotion.

Cite this document (BETA)

Readership Statistics

31 Readers on Mendeley
by Discipline
 
 
 
by Academic Status
 
23% Ph.D. Student
 
16% Student (Postgraduate)
 
10% Student (Master)
by Country
 
10% United Kingdom
 
6% Brazil

Tags

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Already have an account? Sign in