Hypergravity stimulus enhances primary xylem development and decreases mechanical properties of secondary cell walls in inflorescence stems of Arabidopsis thaliana

21Citations
Citations of this article
33Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background and Aims: The xylem plays an important role in strengthening plant bodies. Past studies on xylem formation in tension, woods in poplar and also in clinorotated Prunus tree stems lead to the suggestion that changes in the gravitational conditions affect morphology and mechanical properties of xylem vessels. The aim of this study was to examine effects of hypergravity stimulus on morphology and development of primary xylem vessels and on mechanical properties of isolated secondary wall, preparations in inflorescence stems of Arabidopsis. Methods Morphology of primary xylem was examined under a light microscope on cross-sections of inflorescence stems of arabidopsis plants, which had been grown for 3-5 d after exposure to hypergravity at 300 g for 24 h. Extensibility of secondary cell wall preparation, isolated from inflorescence stems by enzyme digestion of primary cell wall components (mainly composed of metaxylern elements), was examined. Plants were treated with gadolinium chloride, a blocker of mechanoreceptors, to test the involvement of mechanoreceptors in the responses to hypergravity. Key Results Number of metaxylern elements per xylem, apparent thickness of the secondary thickenings, and cross-section area of rnetaxylem elements in inflorescence stems increased in response to hypergravity. Gadolinium chloride suppressed the effect of hypergravity on the increase both in the thickness of secondary thickenings and in the cross-section area of metaxylem elements, while it did not suppress the effect of hypergravity on the increase in the number of metaxylem elements. Extensibility of secondary cell wall preparation decreased in response to hypergravity. Gadolinium chloride suppressed the effect of hypergravity on. cell, wall extensibility. Conclusions Hypergravity stimulus promotes metaxylem development and decreases extensibility of secondary cell walls, and mechanoreceptors were suggested to be involved in these processes.

Cite

CITATION STYLE

APA

Nakabayashi, I., Karahara, I., Tamaoki, D., Masuda, K., Wakasugi, T., Yamada, K., … Kamisaka, S. (2006). Hypergravity stimulus enhances primary xylem development and decreases mechanical properties of secondary cell walls in inflorescence stems of Arabidopsis thaliana. Annals of Botany, 97(6), 1083–1090. https://doi.org/10.1093/aob/mcl055

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free