A lightweight soft exosuit for gait assistance

289Citations
Citations of this article
492Readers
Mendeley users who have this article in their library.
Get full text

Abstract

In this paper we present a soft lower-extremity robotic exosuit intended to augment normal muscle function in healthy individuals. Compared to previous exoskeletons, the device is ultra-lightweight, resulting in low mechanical impedance and inertia. The exosuit has custom McKibben style pneumatic actuators that can assist the hip, knee and ankle. The actuators attach to the exosuit through a network of soft, inextensible webbing triangulated to attachment points utilizing a novel approach we call the virtual anchor technique. This approach is designed to transfer forces to locations on the body that can best accept load. Pneumatic actuation was chosen for this initial prototype because the McKibben actuators are soft and can be easily driven by an off-board compressor. The exosuit itself (human interface and actuators) had a mass of 3500 g and with peripherals (excluding air supply) is 7144 g. In order to examine the exosuit's performance, a pilot study with one subject was performed which investigated the effect of the ankle plantar-flexion timing on the wearer's hip, knee and ankle joint kinematics and metabolic power when walking. Wearing the suit in a passive unpowered mode had little effect on hip, knee and ankle joint kinematics as compared to baseline walking when not wearing the suit. Engaging the actuators at the ankles at 30% of the gait cycle for 250 ms altered joint kinematics the least and also minimized metabolic power. The subject's average metabolic power was 386.7 W, almost identical to the average power when wearing no suit (381.8 W), and substantially less than walking with the unpowered suit (430.6 W). This preliminary work demonstrates that the exosuit can comfortably transmit joint torques to the user while not restricting mobility and that with further optimization, has the potential to reduce the wearer's metabolic cost during walking. © 2013 IEEE.

Cite

CITATION STYLE

APA

Wehner, M., Quinlivan, B., Aubin, P. M., Martinez-Villalpando, E., Baumann, M., Stirling, L., … Walsh, C. (2013). A lightweight soft exosuit for gait assistance. In Proceedings - IEEE International Conference on Robotics and Automation (pp. 3362–3369). https://doi.org/10.1109/ICRA.2013.6631046

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free