Sign up & Download
Sign in

Lucas/Kanade meets Horn/Schunck: Combining local and global optic flow methods

by Andrés Bruhn, Joachim Weickert, Christoph Schnörr
International Journal of Computer Vision ()

Abstract

Differential methods belong to the most widely used techniques for optic flow computation in image sequences. They can be classified into local methods such as the Lucas-Kanade technique or Bigun's structure tensor method, and into global methods such as the Horn/Schunck approach and its extensions. Often local methods are more robust under noise, while global techniques yield dense flow fields. The goal of this paper is to contribute to a better understanding and the design of novel differential methods in four ways: (i) We juxtapose the role of smoothing/regularisation processes that are required in local and global differential methods for optic flow computation. (ii) This discussion motivates us to describe and evaluate a novel method that combines important advantages of local and global approaches: It yields dense flow fields that are robust against noise. (iii) Spatiotemporal and nonlinear extensions as well as multiresolution frameworks are presented for this hybrid method. (iv) We propose a simple confidence measure for optic flow methods that minimise energy functionals. It allows to sparsify a dense flow field gradually, depending on the reliability required for the resulting flow. Comparisons with experiments from the literature demonstrate the favourable performance of the proposed methods and the confidence measure.

Cite this document (BETA)

Readership Statistics

221 Readers on Mendeley
by Discipline
 
 
 
by Academic Status
 
46% Ph.D. Student
 
10% Student (Master)
 
7% Researcher (at an Academic Institution)
by Country
 
5% Germany
 
3% United Kingdom
 
3% United States

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Already have an account? Sign in