Sign up & Download
Sign in

Modeling interfacial liquid layers on environmental ices

by M. H. Kuo, S. G. Moussa, V. F. McNeill
Atmospheric Chemistry and Physics ()

Abstract

Interfacial layers on ice significantly influence air-ice chemical interactions. In solute-containing aqueous systems, a liquid brine may form upon freezing due to the exclusion of impurities from the ice crystal lattice coupled with freezing point depression in the concentrated brine. The brine may be segregated to the air-ice interface where it cre- ates a surface layer, in micropockets, or at grain boundaries or triple junctions. We present a model for brines and their associated liq- uid layers in environmental ice systems that is valid over a wide range of temperatures and solute concentrations. The model is derived from fundamental equlibrium thermody- namics and takes into account nonideal solution behavior in the brine, partitioning of the solute into the ice matrix, and equilibration between the brine and the gas phase for volatile solutes. We find that these phenomena are important to con- sider when modeling brines in environmental ices, especially at low temperatures. We demonstrate its application for en- vironmentally important volatile and nonvolatile solutes in- cluding NaCl, HCl, and HNO 3 . The model is compared to existing models and experimental data from literature where available. We also identify environmentally relevant regimes where brine is not predicted to exist, but the QLL may sig- nificantly impact air-ice chemical interactions. This model can be used to improve the representation of air-ice chemical interactions in polar atmospheric chemistry models.

Cite this document (BETA)

Readership Statistics

13 Readers on Mendeley
by Discipline
 
 
 
by Academic Status
 
31% Ph.D. Student
 
31% Post Doc
 
8% Lecturer
by Country
 
31% United States
 
8% United Kingdom
 
8% Spain

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Already have an account? Sign in