Sign up & Download
Sign in

Morphology, composition and mixing state of individual carbonaceous aerosol in urban Shanghai

by H. Fu, M. Zhang, W. Li, J. Chen, L. Wang, X. Quan, W. Wang
Atmospheric Chemistry and Physics Discussions ()

Abstract

A total of 834 individual aerosol particles were collected during October and November 2010 in urban Shanghai, China. Particles were sampled under different weather and air quality conditions. Morphologies, compositions and mixing states of carbonaceous aerosols were investigated by transmission electron microscopy (TEM) coupled with energy-dispersive X-ray (EDX). Structures of some particles were verified using selected-area electron diffraction (SAED). Among the aerosol particles observed, carbonaceous aerosols were mainly categorized into four types: polymeric organic compound (POC), soot, tar ball, and biogenic particle. Based on the detailed TEM-EDX analysis, most of the particles were coated with secondary organic aerosols (SOA), which commonly formed through condensation or heterogeneous reactions of precursor gases on pre-existing particles. Aged particles were associated with days with low wind velocities, showed complex structures, and were bigger in size. The internally mixed particles of sulphates, organics and soot were encountered frequently. Such internally mixed particles may be preferentially formed during a stagnated air mass during serious pollution events, such as on 13 November. Although relative number counts varied with different species, sulphates (38–71%) and soot (11–22%) constituted the most dominant species observed in the samples. However, soil-derived particles (68%) were relatively more frequently observed on the sample collected on 12 November during a dust storm.

Cite this document (BETA)

Readership Statistics

17 Readers on Mendeley
by Discipline
 
 
 
by Academic Status
 
29% Ph.D. Student
 
18% Post Doc
 
12% Professor
by Country
 
6% Brazil
 
6% United States

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Already have an account? Sign in