Sign up & Download
Sign in

Multi-season eddy covariance observations of energy, water and carbon fluxes over a suburban area in Swindon, UK

by H. C. Ward, J. G. Evans, C. S B Grimmond
Atmospheric Chemistry and Physics ()

Abstract

Eddy covariance measurements of the turbulent sensible heat, latent heat and carbon dioxide flux for twelve months (2011–2012) are reported for the first time for a suburban area in the UK. The results from Swindon are compatible with suburban studies of similar surface cover elsewhere but reveal large seasonal variability. Energy partitioning favours turbulent sensible heat during summer (midday Bowen ratio 1.4–1.6) and latent heat in winter (0.05–0.7), a significant proportion of energy is stored (and released) by the urban fabric and the estimated anthropogenic heat flux is small but non-negligible (0.5–0.9 MJ m−2 day−1). The sensible heat flux is negative at night and for much of winter daytimes, reflecting the vegetated nature of the site (44%). Latent heat fluxes appear to be water limited during a dry spring in both 2011 and 2012, when the response of the surface to moisture availability can be seen on a daily timescale. Energy and other factors are more relevant controls at other times; at night the wind speed is important. Surface conductance follows a smooth, asymmetrical diurnal course peaking at around 7–10 mm s−1 but values are larger and highly variable for wet conditions. The combination of natural (vegetative) and anthropogenic (emission) processes is most evident in the temporal variation of the carbon flux: significant photosynthetic uptake is seen during summer, whilst traffic and building emissions explain peak release in winter (9.87 g C m−2 day−1). The area is a net source of CO2 annually. Analysis by wind direction highlights the role of urban vegetation in promoting evapotranspiration and offsetting CO2 emissions, especially when contrasted against peak traffic emissions from sectors with more roads. Given the extent of suburban land use, these results have important implications for understanding urban energy, water and carbon dynamics.

Cite this document (BETA)

Readership Statistics

8 Readers on Mendeley
by Discipline
 
 
 
by Academic Status
 
50% Ph.D. Student
 
25% Student (Master)
 
13% Researcher (at an Academic Institution)

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Already have an account? Sign in