A multi-zone model evaluation of the efficacy of upper-room air ultraviolet germicidal irradiation

57Citations
Citations of this article
41Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Engineering controls can be used to reduce the spread of airborne infectious disease, particularly tuberculosis (TB), in high-risk settings. This article evaluates published data on the efficacy of upper-room air ultraviolet germicidal irradiation (UVGI). A three-zone representation of a TB patient room equipped with a germicidal UV lamp is developed. The lamp irradiates the upper-room zone and inactivates airborne mycobacteria; the unirradiated lower-room zone also contains a near-field zone surrounding the TB patient. Infectious particles are generated in the near-field zone and transported throughout the room by air flow between zones. Each zone is independently well-mixed; the whole room, however, is not well-mixed. The three-zone model is applied to a previously published study of UVGI against airborne mycobacteria in a test room. Based on the estimated slopes of the semi-log concentration decay curves for viable mycobacteria, and on the assumption that the test room was essentially well-mixed, the published study reported that UVGI provided 10 to 25 equivalent air changes per hour. However, when the same decay curve slopes are interpreted in the context of the three-zone model, UVGI is seen to be far less effective in reducing exposure intensity near the TB patient. Near-field exposure intensity is relevant because health care workers are usually in close proximity to the TB patients they attend. In general, the interpretation of concentration decay data depends on the specific model of room air mixing that is assumed appropriate. It is recommended that tests of the efficacy of UVGI and other control devices against airborne microorganisms be based on steady-state concentration measurements rather than concentration decay measurements, because the former measurements do not require inferences based on a particular model.

Cite

CITATION STYLE

APA

Nicas, M., & Miller, S. L. (1999). A multi-zone model evaluation of the efficacy of upper-room air ultraviolet germicidal irradiation. Applied Occupational and Environmental Hygiene, 14(5), 317–328. https://doi.org/10.1080/104732299302909

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free