Neural Mechanisms of Rhythm Perception: Current Findings and Future Perspectives

173Citations
Citations of this article
431Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Perception of temporal patterns is fundamental to normal hearing, speech, motor control, and music. Certain types of pattern understanding are unique to humans, such as musical rhythm. Although human responses to musical rhythm are universal, there is much we do not understand about how rhythm is processed in the brain. Here, I consider findings from research into basic timing mechanisms and models through to the neuroscience of rhythm and meter. A network of neural areas, including motor regions, is regularly implicated in basic timing as well as processing of musical rhythm. However, fractionating the specific roles of individual areas in this network has remained a challenge. Distinctions in activity patterns appear between "automatic" and "cognitively controlled" timing processes, but the perception of musical rhythm requires features of both automatic and controlled processes. In addition, many experimental manipulations rely on participants directing their attention toward or away from certain stimulus features, and measuring corresponding differences in neural activity. Many temporal features, however, are implicitly processed whether attended to or not, making it difficult to create controlled baseline conditions for experimental comparisons. The variety of stimuli, paradigms, and definitions can further complicate comparisons across domains or methodologies. Despite these challenges, the high level of interest and multitude of methodological approaches from different cognitive domains (including music, language, and motor learning) have yielded new insights and hold promise for future progress. © 2012 Cognitive Science Society, Inc.

Cite

CITATION STYLE

APA

Grahn, J. A. (2012). Neural Mechanisms of Rhythm Perception: Current Findings and Future Perspectives. Topics in Cognitive Science, 4(4), 585–606. https://doi.org/10.1111/j.1756-8765.2012.01213.x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free