N-nitrosodimethylamine (NDMA) removal by reverse osmosis and UV treatment and analysis via LC-MS/MS

203Citations
Citations of this article
180Readers
Mendeley users who have this article in their library.
Get full text

Abstract

N-nitrosodimethylamine (NDMA) is a probable human carcinogen found in ng/l concentrations in chlorinated and chloraminated water. A method was developed for the determination of ng/l levels of NDMA using liquid chromatography-tandem mass spectrometry (LC-MS/MS) preceded by sample concentration via solid-phase extraction with activated charcoal. Recoveries were greater than 90% and allowed a method reporting limit as low as 2 ng/l. Using this method, the removal of NDMA was determined for the Interim Water Purification Facility (IWPF), an advanced wastewater treatment facility operated by the Orange County Water District (OCWD) in Southern California. The facility treats effluent from an activated sludge treatment plant with microfiltration (MF), reverse osmosis (RO), and an ultraviolet-hydrogen peroxide advanced oxidation process (UV-AOP). Six nitrosamines were surveyed: NDMA, N-nitrosomethylethylamine (NMEA), N-nitrosodiethylamine (NDEA), N-nitrosodi-n-propylamine (NDPA), N-nitrosopiperidine (NPip), and N-nitrosopyrrolidine (NPyr). Only NDMA was detected and at all treatment steps in the IWPF, with influent concentrations ranging from 20 to 59 ng/l. Removals for RO and UV ranged from 24% to 56% and 43% to 66%, respectively. Overall, 69±7% of the original NDMA concentration was removed from the product water across the advanced treatment process and, in combination with blending, the final concentration did not exceed the California drinking water notification level of 10 ng/l. NDMA removal data are consistent with findings reviewed for other advanced treatment facilities and laboratory studies. © 2007 Elsevier Ltd. All rights reserved.

Cite

CITATION STYLE

APA

Plumlee, M. H., López-Mesas, M., Heidlberger, A., Ishida, K. P., & Reinhard, M. (2008). N-nitrosodimethylamine (NDMA) removal by reverse osmosis and UV treatment and analysis via LC-MS/MS. Water Research, 42(1–2), 347–355. https://doi.org/10.1016/j.watres.2007.07.022

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free