Sign up & Download
Sign in

Ogive Nose Hard Missile Penetrating Concrete Slab Numerical Simulation Approach

by Qadir Bux, Ismail Abdul Rahman, Ahmad Mujahid, Ahmad Zaidi
Proceeding of the International Conference on Advanced Science Engineering and Information Technology 2011 Hotel Equatorial BangiPutrajaya Malaysia 14 15 January 2011 ()

Abstract

Great demand exists for more efficient design to protect delicate and serious structures such as nuclear plants, Power plants, Weapon Industries, weapons storage places, water retaining structures, & etc, against impact of kinetic missiles generated both accidentally and deliberately such as dynamic loading, incident occurs in nuclear plants, terrorist attack, Natural disasters like tsunami and etc., in various impact and blast scenarios for both civilian and military activities. In many cases, projectiles can be treated as rigid bodies when their damage and erosion are not severe. Due to the intricacy of the local impact damages, investigations are generally based on experimental data. Conclusions of the experimental observations are then used to guide engineering models. Local damages studies normally fall into three categories, i.e. empirical formulae based on data fitting, idealised analytical models based on physic laws and numerical simulations based on computational mechanics and material models. In the present study, 2D asymmetrical numerical simulation have done on concrete slab against the impact of ogive nose hard missile of 26.90mm and 76.20mm diameter with CRH ratio 2.0 and 6.0 respectively, for penetration by using Concrete Damaged Plasticity Model, and ABAQUS/Explicit dynamic analysis in ABAQUS. It is found that the strains/stresses are induced in the concrete slab and a very nicely propagation of the stresses inside the concrete slab in the form of waves, which is a clear indication for vibrations of the concrete. The lack of failure criterion in concrete damaged plasticity model does not allow the removal of elements during the analyses. This means that spalling, scabbing, and perforation cannot be modelled with the Concrete Damage Plasticity Model. The penetration depth results shows that the deeper penetration requires higher critical impact kinetic energies, and comparison shows the simulation results are more accurate than other formulae predicted results.

Cite this document (BETA)

Readership Statistics

6 Readers on Mendeley
by Discipline
 
by Academic Status
 
33% Ph.D. Student
 
17% Student (Master)
 
17% Doctoral Student
by Country
 
17% Oman

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Already have an account? Sign in