Optical properties and chemical composition of aerosol particles at an urban location: An estimation of the aerosol mass scattering and absorption efficiencies

101Citations
Citations of this article
89Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We investigated aerosol optical properties, mass concentration and chemical composition over a 1 year period (from March 2006 to February 2007) at an urban site in Southern Spain (Granada, 37.18°N, 3.58°W, 680 m above sea level). Light-scattering and absorption measurements were performed using an integrating nephelometer and a MultiAngle Absorption Photometer (MAAP), respectively, with no aerosol size cut-off and without any conditioning of the sampled air. PM 10 and PM 1 (ambient air levels of atmospheric particulate matter finer than 10 and 1 microns) were collected with two high volume samplers, and the chemical composition was investigated for all samples. Relative humidity (RH) within the nephelometer was below 50% and the weighting of the filters was also at RH of 50%. PM 10 and PM 1 mass concentrations showed a mean value of 44 ± 19 μg/m 3 and 15 ± 7 μg/m 3, respectively. The mineral matter was the major constituent of the PM 10-1 fraction (contributing more than 58%) whereas organic matter and elemental carbon (OM+EC) contributed the most to the PM 1 fraction (around 43%). The absorption coefficient at 550 nm showed a mean value of 24 ± 9 Mm -1 and the scattering coefficient at 550 nm presented a mean value of 61 ± 25 Mm -1, typical of urban areas. Both the scattering and the absorption coefficients exhibited the highest values during winter and the lowest during summer, due to the increase in the anthropogenic contribution and the lower development of the convective mixing layer during winter. A very low mean value of the single scattering albedo of 0.71 ± 0.07 at 550 nm was calculated, suggesting that urban aerosols in this site contain a large fraction of absorbing material. Mass scattering and absorption efficiencies of PM 10 particles exhibited larger values during winter and lower during summer, showing a similar trend to PM 1 and opposite to PM 10-1. This seasonality is therefore influenced by the variations on PM composition. In addition, the mass scattering efficiency of the major aerosol constituents in PM 10 were also calculated applying the multilinear regression (MLR) analysis. Among all of them, the most efficient in terms of scattering was sulfate ion (7 ± 1 m 2 g -1) while the least efficient was the mineral matter (0.2 ± 0.3 m 2 g -1). On the other hand, we found that the absorption process was mainly dominated by carbonaceous particles. Copyright © 2012 by the American Geophysical Union.

Cite

CITATION STYLE

APA

Titos, G., Foyo-Moreno, I., Lyamani, H., Querol, X., Alastuey, A., & Alados-Arboledas, L. (2012). Optical properties and chemical composition of aerosol particles at an urban location: An estimation of the aerosol mass scattering and absorption efficiencies. Journal of Geophysical Research Atmospheres, 117(4). https://doi.org/10.1029/2011JD016671

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free