Sign up & Download
Sign in

Origin and radiative forcing of black carbon transported to the Himalayas and Tibetan Plateau

by M. Kopacz, D. L. Mauzerall, J. Wang, E. M. Leibensperger, D. K. Henze, K. Singh
Atmospheric Chemistry and Physics ()

Abstract

The remote and high elevation regions of central Asia are influenced by black carbon (BC) emissions from a variety of locations. BC deposition contributes to melting of glaciers and questions exist, of both scientific and policy interest, as to the origin of the 5 BC reaching the glaciers. We use the adjoint of the GEOS-Chem model to identify the location from which BC arriving at a variety of locations in the Himalayas and Tibetan Plateau originates. We then calculate its direct and snow-albedo radiative forcing. We analyze the seasonal variation in the origin of BC using an adjoint sensitivity analysis, which provides a detailed map of the location of emissions that directly contribute to 10 black carbon concentrations at receptor locations. We find that emissions from northern India and central China contribute the majority of BC to the Himalayas, although the precise location varies with season. The Tibetan Plateau receives most BC from western and central China, as well as from India, Nepal, the Middle East, Pakistan and other countries. The magnitude of contribution from each region varies with season 15 and receptor location. We find that sources as varied as African biomass burning and Middle Eastern fossil fuel combustion can significantly contribute to the BC reaching the Himalayas and Tibetan Plateau. We compute radiative forcing in the snow-covered regions and estimate the forcing due to the BC induced snow-albedo effect at about 5 15Wm2 within the region, an order of magnitude larger than radiative forcing due to 20 the direct effect, and with significant seasonal variation in the northern Tibetan Plateau. Radiative forcing from reduced snow albedo accelerates glacier melting. Our analysis can help inform mitigation efforts to slow the rate of glacial melt by identifying regions that make the largest contributions to BC deposition in the Himalayas and Tibetan Plateau.

Cite this document (BETA)

Readership Statistics

30 Readers on Mendeley
by Discipline
 
 
 
by Academic Status
 
30% Ph.D. Student
 
23% Post Doc
 
17% Researcher (at an Academic Institution)
by Country
 
3% Italy
 
3% India
 
3% Germany

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Already have an account? Sign in