Sign up & Download
Sign in

Projected loss of a salamander diversity hotspot as a consequence of projected global climate change

by Joseph R. Milanovich, William E. Peterman, Nathan P. Nibbelink, John C. Maerz
PLoS ONE ()

Abstract

BACKGROUND: Significant shifts in climate are considered a threat to plants and animals with significant physiological limitations and limited dispersal abilities. The southern Appalachian Mountains are a global hotspot for plethodontid salamander diversity. Plethodontids are lungless ectotherms, so their ecology is strongly governed by temperature and precipitation. Many plethodontid species in southern Appalachia exist in high elevation habitats that may be at or near their thermal maxima, and may also have limited dispersal abilities across warmer valley bottoms. METHODOLOGY/PRINCIPAL FINDINGS: We used a maximum-entropy approach (program Maxent) to model the suitable climatic habitat of 41 plethodontid salamander species inhabiting the Appalachian Highlands region (33 individual species and eight species included within two species complexes). We evaluated the relative change in suitable climatic habitat for these species in the Appalachian Highlands from the current climate to the years 2020, 2050, and 2080, using both the HADCM3 and the CGCM3 models, each under low and high CO(2) scenarios, and using two-model thresholds levels (relative suitability thresholds for determining suitable/unsuitable range), for a total of 8 scenarios per species. CONCLUSION/SIGNIFICANCE: While models differed slightly, every scenario projected significant declines in suitable habitat within the Appalachian Highlands as early as 2020. Species with more southern ranges and with smaller ranges had larger projected habitat loss. Despite significant differences in projected precipitation changes to the region, projections did not differ significantly between global circulation models. CO(2) emissions scenario and model threshold had small effects on projected habitat loss by 2020, but did not affect longer-term projections. Results of this study indicate that choice of model threshold and CO(2) emissions scenario affect short-term projected shifts in climatic distributions of species; however, these factors and choice of global circulation model have relatively small affects on what is significant projected loss of habitat for many salamander species that currently occupy the Appalachian Highlands.

Cite this document (BETA)

Readership Statistics

134 Readers on Mendeley
by Discipline
 
 
 
by Academic Status
 
28% Ph.D. Student
 
14% Student (Master)
 
10% Researcher (at a non-Academic Institution)
by Country
 
16% United States
 
2% Germany
 
1% United Kingdom

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Already have an account? Sign in