Sign up & Download
Sign in

PROSHIFT: protein chemical shift prediction using artificial neural networks

by Jens Meiler
J Biomol NMR ()

Abstract

The importance of protein chemical shift values for the determination of three-dimensional protein structure has increased in recent years because of the large databases of protein structures with assigned chemical shift data. These databases have allowed the investigation of the quantitative relationship between chemical shift values obtained by liquid state NMR spectroscopy and the three-dimensional structure of proteins. A neural network was trained to predict the (1)H, (13)C, and (15)N of proteins using their three-dimensional structure as well as experimental conditions as input parameters. It achieves root mean square deviations of 0.3 ppm for hydrogen, 1.3 ppm for carbon, and 2.6 ppm for nitrogen chemical shifts. The model reflects important influences of the covalent structure as well as of the conformation not only for backbone atoms (as, e.g., the chemical shift index) but also for side-chain nuclei. For protein models with a RMSD smaller than 5 A a correlation of the RMSD and the r.m.s. deviation between the predicted and the experimental chemical shift is obtained. Thus the method has the potential to not only support the assignment process of proteins but also help with the validation and the refinement of three-dimensional structural proposals. It is freely available for academic users at the PROSHIFT server: www.jens-meiler.de/proshift.html

Author-supplied keywords

Cite this document (BETA)

Readership Statistics

10 Readers on Mendeley
by Discipline
 
 
 
by Academic Status
 
30% Ph.D. Student
 
20% Assistant Professor
 
10% Student (Bachelor)
by Country
 
10% United Kingdom
 
10% Colombia
 
10% Russia

Tags

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Already have an account? Sign in