R ECYCLING – F ROM E - WASTE T O R ESOURCES

  • Innovation S
  • Transfer T
  • Studies I
N/ACitations
Citations of this article
182Readers
Mendeley users who have this article in their library.

Abstract

Sustainable Innovation, understood as the shift of sustainable technologies, products and services to the market, requires a market creation concept and one common global agenda. The challenge is to raise awareness among all actors of the different sectors in order to realize the innovation potential and to shift to eco-innovations that lead to sustainable consumption and production patterns. Throughout this study prepared within the “Solving the E-Waste Problem (StEP) Initiative” the focus lies on a consistent set of different types of metals (ferrous and non-ferrous metals) such as aluminium (Al), copper (Cu), palladium (Pd) and gold (Au). Toxic and hazardous elements are present in e-waste, which are partially drivers for the implementation of sound collection and treatment processes. Therefore in the discussion of recycling technologies, the proper handling and treatment of such harmful elements to prevent environmental or health impact is included. Furthermore, the use and generation of toxic/hazardous substances during e-waste processing (for example, a mercury-gold amalgam or combined dioxins from inappropriate incineration) is critically evaluated with respect to the sustainability criteria for innovative technologies. The study, structured in three parts, has the following three main objectives: (1) Analysis of the market potential of relevant technologies for the e-waste recycling sector in selected developing countries, (2) Examination of the application of the ‘Framework for UNEP Technology Transfer Activities in Support of Global Climate Change Objectives’ in order to foster the transfer of innovative technologies in the e-waste recycling sector, (3) Identification of innovation hubs and centres of excellence in emerging economies relevant for e-waste recycling technologies. After an introduction to the objectives, scope and methodology of this study, the second chapter introduces the fundamentals of e-waste recycling, including: • Significance of e-waste for resource management and toxic control, • Structure and main steps in the recycling chain, • Basic objectives to achieve for e-waste recycling, • Innovation criteria for evaluation of technologies. The appropriate handling of e-waste can both prevent serious environmental damage and also recover valuable materials, especially for metals. The recycling chain for e-waste is classified into three main subsequent steps: (i) collection, (ii) sorting/dismantling and pre- processing (including sorting, dismantling and mechanical treatment) and (iii) end- processing. All three steps should operate and interact in a holistic manner to achieve the overall recycling objectives. The main objectives of e-waste recycling and basic considerations for innovation are: • Treat the hazardous fractions in an environmentally sound manner, • Recover valuable material maximally, • Create eco-efficient and sustainable business, • Consider social impact and local context. The general criteria to specific requirements for separation and dismantling of e-waste are given and sustainability attributes used as innovation criteria and to compare current and innovative technologies are divided into economic, environmental and social aspects. In the third chapter available pre-processing technologies are described respectively in three categories of waste equipments: (i) cooling and freezing (C&F) appliances, (ii) information and communication technologies (ICT) appliances and (iii) monitors and televisions (TVs). End-processing technologies are depicted for printed wiring boards and small electronic devices, metallic fractions with precious metals, other metallic fractions, and aluminium, ferrous and lead containing-glass from cathode ray tubes (CRT). Current e-waste generation volumes for the selected 11 developing countries have been estimated, based on the e-waste data of personal computers, printers, mobile phones, televisions and refrigerators. Future generation of e-waste is estimated accordingly. It is indicated from the prediction that on average, a linear increase has been found for personal computers (PCs), TVs and refrigerators among the selected countries, while mobile phone sales and stocks showed an exponential growth in the past years. The market potential is estimated as a function of possible volumes of e-waste available for recycling and the typical size of a recycling facility adapting a specific technology. Market potential of innovative pre-processing technologies are evaluated within the three criteria of (i) manual dismantling/ sorting of fractions, (ii) de-gassing chlorofluorocarbons (CFCs)/ hydrochlorofluorocarbons (HFCs) and (iii) semi-automatic CRT cut and cleaning for the selected 11 countries. Market potential of innovative end-processing technologies is assessed by the criteria of integrated smelter for non-ferrous (pyrometallurgical methods) and aluminium smelter/refiner for the target countries. By examining the actual performance of the recycling chains of both informal and formal recyclers in the selected countries, it has been shown that sustainable technologies exist as a result of individual or corporate initiatives. On the other hand a number of inefficient and unsustainable operations, which lack environmental, health and safety (EHS) standards and best practices, could have potential for future implementation of innovation technologies. By examining the respective scale of the informal and formal sectors in the selected countries, the 11 countries have been grouped into three categories. Group A (Kenya, Uganda, Senegal, Peru) is classified as promising for the introduction of innovative pre- processing technologies with a strong support in capacity building. Group B (India, China) is classified as having a significant potential for the introduction of pre- and end-processing technologies with a strong support in capacity building in the informal sector. Group C (South Africa, Morocco, Colombia, Mexico, Brazil) is classified as having a significant potential to adapt pre- and to some extent end-processing technologies to their own needs, following a technology and knowledge exchange. Barriers for the transfer of sustainable e-waste recycling technologies have been identified for each of the target countries for the different dimensions: (i) policy and legislation, (ii) technology and skills and (iii) business and financing. The listed barriers are also hindering the implementation of sustainable e-waste management systems in the countries under analysis. By following the United Nations Environment Programme (UNEP) “Framework for Analysis: Technology Transfer to address Climate Change”, South Africa and China are selected to introduce the strategic technology transfer programme for sustainable e-waste recycling technologies in the fourth chapter. South Africa and China are identified to be promising examples for the application of the UNEP technology transfer framework. South Africa features advanced framework conditions with a strong engagement of the manufacturers and importers industry in e-waste management. China features large volumes and a large interest in e-waste recycling by the informal and the formal sector which defines a vibrant selection of technology transfer opportunities.

Cite

CITATION STYLE

APA

Innovation, S., Transfer, T., & Studies, I. S. (n.d.). R ECYCLING – F ROM E - WASTE T O R ESOURCES.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free