Tractography in the study of the human brain: A neurosurgical perspective

23Citations
Citations of this article
80Readers
Mendeley users who have this article in their library.

Abstract

Background: The brain functions as an integrated multi-networked organ. Complex neurocognitive functions are not attributed to a single brain area but depend on the dynamic interactions of distributed brain areas operating in large-scale networks. This is especially important in the field of neurosurgery where intervention within a spatially localized area may indirectly lead to unwanted effects on distant areas. As part of a preliminary integrated work on functional connectivity, we present our initial work on diffusion tensor imaging tractography to produce in vivo white matter tracts dissection. Methods: Diffusion weighted data and high-resolution T1-weighted images were acquired from a healthy right-handed volunteer (25 years old) on a whole-body 3 T scanner. Two approaches were used to dissect the tractography results: 1) a standard region of interest technique and 2) the use of Brodmann's area as seeding points, which represents an innovation in terms of seeds initiation. Results: Results are presented as tri-dimensional tractography images. The uncinate fasciculus, the inferior longitudinal fasciculus, the inferior fronto-occipital fasiculus, the corticospinal tract, the corpus callosum, the cingulum, and the optic radiations where studied by conventional seeding approach, while Broca's and Wernicke's areas, the primary motor as well as the primary visual cortices were used as seeding areas in the second approach. Conclusions: We report state-of-the-art tractography results of some of the major white matter bundles in a normal subject using DTI. Moreover, we used Brodmann's area as seeding areas for fiber tracts to study the connectivity of known major functional cortical areas.

Cite

CITATION STYLE

APA

Fortin, D., Aubin-Lemay, C., Boré, A., Girard, G., Houde, J. C., Whittingstall, K., & Descoteaux, M. (2012). Tractography in the study of the human brain: A neurosurgical perspective. Canadian Journal of Neurological Sciences, 39(6), 747–756. https://doi.org/10.1017/S0317167100015560

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free