Transplanted hypothalamic neurons restore leptin signaling and ameliorate obesity in db/db mice

44Citations
Citations of this article
181Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Evolutionarily old and conserved homeostatic systems in the brain, including the hypothalamus, are organized into nuclear structures of heterogeneous and diverse neuron populations. To investigate whether such circuits can be functionally reconstituted by synaptic integration of similarly diverse populations of neurons, we generated physically chimeric hypothalami by microtransplanting small numbers of embryonic enhanced green fluorescent protein-expressing, leptin-responsive hypothalamic cells into hypothalami of postnatal leptin receptor-deficient (db/db) mice that develop morbid obesity. Donor neurons differentiated and integrated as four distinct hypothalamic neuron subtypes, formed functional excitatory and inhibitory synapses, partially restored leptin responsiveness, and ameliorated hyperglycemia and obesity in db/db mice. These experiments serve as a proof of concept that transplanted neurons can functionally reconstitute complex neuronal circuitry in the mammalian brain.

Cite

CITATION STYLE

APA

Czupryn, A., Zhou, Y. D., Chen, X., McNay, D., Anderson, M. P., Flier, J. S., & Macklis, J. D. (2011). Transplanted hypothalamic neurons restore leptin signaling and ameliorate obesity in db/db mice. Science, 334(6059), 1133–1137. https://doi.org/10.1126/science.1209870

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free