Watching electrons move in real time: Ultrafast infrared spectroscopy of a polymer blend photovoltaic material

87Citations
Citations of this article
111Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The dynamics of photoinduced charge separation and the motion of the resulting electrons are examined in an organic photovoltaic material with a combination of ultrafast two-dimensional infrared (2D IR) and visible pump-infrared probe (Vis-IR) spectroscopy. The carbonyl (C=O) stretch of the butyric acid methyl ester group of a functionalized fullerene, PCBM, is probed as a local vibrational reporter of the dynamics in a blend of the fullerene with a conjugated polymer, CN-MEH-PPV. Charge transfer occurs preferentially at the interfaces between the roughly spherical domains of fullerene molecules and the polymer. Comparison of the Vis-IR and 2D IR spectra reveals that the fullerene molecules at the interfaces of the domains possess higher frequency carbonyl vibrational modes, while molecules in the centers of the domains have lower frequency modes relative to the center of the transition. The correlation between the frequency of a carbonyl mode and the spatial position of its host fullerene molecule provides a means to observe the motion of electrons within individual domains through the spectral evolution of the carbonyl bleach. From the spectral evolution, we find that the average radial velocity of electrons is 1-2 m/s, which suggests an intrinsic mobility that is at least one order of magnitude greater than the mobility in the polymer blend. The results indicate that organic solar cells with higher mobility and thus efficiency may be realized by controlling the morphology of the polymer and fullerene materials. © 2007 American Chemical Society.

Cite

CITATION STYLE

APA

Barbour, L. W., Hegadorn, M., & Asbury, J. B. (2007). Watching electrons move in real time: Ultrafast infrared spectroscopy of a polymer blend photovoltaic material. Journal of the American Chemical Society, 129(51), 15884–15894. https://doi.org/10.1021/ja074657x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free