Wnt signal transduction pathways

1.0kCitations
Citations of this article
2.5kReaders
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The Wnt signaling pathway is an ancient and evolutionarily conserved pathway that regulates crucial aspects of cell fate determination, cell migration, cell polarity, neural patterning and organogenesis during embryonic development. The Wnts are secreted glycoproteins and comprise a large family of nineteen proteins in humans hinting to a daunting complexity of signaling regulation, function and biological output. To date major signaling branches downstream of the Fz receptor have been identified including a canonical or Wnt/β-catenin dependent pathway and the non-canonical or β-catenin-independent pathway which can be further divided into the Planar Cell Polarity and the Wnt/Ca2+ pathways, and these branches are being actively dissected at the molecular and biochemical levels. In this review, we will summarize the most recent advances in our understanding of these Wnt signaling pathways and the role of these pathways in regulating key events during embryonic patterning and morphogenesis. ©2008 Landes Bioscience.

Cite

CITATION STYLE

APA

Komiya, Y., & Habas, R. (2008). Wnt signal transduction pathways. Organogenesis. Landes Bioscience. https://doi.org/10.4161/org.4.2.5851

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free