Sign up & Download
Sign in

α-pinene photooxidation under controlled chemical conditions - Part 1: Gas-phase composition in low- and high-NOx environments

by N C Eddingsaas, C L Loza, L D Yee, J H Seinfeld, P O Wennberg
Atmospheric Chemistry and Physics Discussions ()

Abstract

The OH oxidation of α-pinene under both low- and high-NOx environments was studied in the Caltech atmospheric chambers. Ozone was kept low to ensure OH was the oxidant. The initial α-pinene concentration was 20-50 ppb to ensure that the dominant peroxy radical pathway under low-NOx conditions is reaction with HO2 and under high-NOx conditions, reactions with NO. Here we present the gas-phase results observed. Under low-NOx conditions the main first generation oxidation products are α-pinene hydroxy hydroperoxide and pinonaldehyde, accounting for over 40% of the yield. In all, 65-75% of the carbon can be accounted for in the gas phase; this excludes first-generation products that enter the particle phase. We suggest that pinonaldehyde forms from RO2 + HO2 through an alkoxy radical channel that regenerates OH, a mechanism typically associated with acyl peroxy radicals, not alkyl peroxy radicals. The OH oxidation and photolysis of α-pinene hydroxy hydroperoxides leads to further production of pinonaldehyde, resulting in total pinonaldehyde yield from low-NOx OH oxidation of ~33%. The low-NOx OH oxidation of pinonaldehyde produces a number of carboxylic acids and peroxyacids known to be important secondary organic aerosol components. Under high-NOx conditions, pinonaldehyde was also found to be the major first-generation OH oxidation product. The high-NOx OH oxidation of pinonaldehyde did not produce carboxylic acids and peroxyacids. A number of organonitrates and peroxyacyl nitrates are observed and identified from α-pinene and pinonaldehyde.

Cite this document (BETA)

Readership Statistics

6 Readers on Mendeley
by Discipline
 
 
 
by Academic Status
 
33% Post Doc
 
33% Assistant Professor
 
17% Doctoral Student
by Country
 
17% Austria

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Already have an account? Sign in