Anaerobic biotransformation of roxarsone and related N-substituted phenylarsonic acids

170Citations
Citations of this article
55Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Large quantities of arsenic are introduced into the environment through land application of poultry litter containing the organoarsenical feed additive roxarsone (3-nitro-4-hydroxyphenylarsonic acid). The objective of this study was to evaluate the bioconversion of roxarsone and related N-substituted phenylarsonic acid derivatives under anaerobic conditions. The results demonstrate that roxarsone is rapidly transformed in the absence of oxygen to the corresponding aromatic amine, 4-hydroxy-3-aminophenylarsonic acid (HAPA). The formation of HAPA is attributable to the facile reduction of the nitro group. Electron-donating substrates, such as hydrogen gas, glucose, and lactate, stimulated the rate of nitro group reduction, indicating a microbial role. During long-term incubations, HAPA and the closely related 4-aminophenylarsonic acid (4-APA) were slowly biologically eliminated by up to 99% under methanogenic and sulfate-reducing conditions, whereas little or no removal occurred in heat-killed inoculum controls. Arsenite and, to a lesser extent, arsenate were observed as products of the degradation. Freely soluble forms of the inorganic arsenical species accounted for 19-28% of the amino-substituted phenylarsonic acids removed. This constitutes the first report of a biologically catalyzed rupture of the phenylarsonic group under anaerobic conditions. © 2006 American Chemical Society.

Cite

CITATION STYLE

APA

Cortinas, I., Field, J. A., Kopplin, M., Garbarino, J. R., Gandolfi, A. J., & Sierra-Alvarez, R. (2006). Anaerobic biotransformation of roxarsone and related N-substituted phenylarsonic acids. Environmental Science and Technology, 40(9), 2951–2957. https://doi.org/10.1021/es051981o

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free