The angiogenic inhibitor long pentraxin PTX3 forms an asymmetric octamer with two binding sites for FGF2

98Citations
Citations of this article
48Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The inflammation-associated long pentraxin PTX3 plays key roles in innate immunity, female fertility, and vascular biology (e.g. it inhibits FGF2 (fibroblast growth factor 2)-mediated angiogenesis). PTX3 is composed of multiple protomers, each composed of distinct N- and C-terminal domains; however, it is not known how these are organized or contribute to its functional properties. Here, biophysical analyses reveal that PTX3 is composed of eight identical protomers, associated through disulfide bonds, forming an elongated and asymmetric, molecule with two differently sized domains interconnected by a stalk. The N-terminal region of the protomer provides the main structural determinant underlying this quaternary organization, supporting formation of a disulfide-linked tetramer and a dimer of dimers (a non-covalent tetramer), giving rise to the asymmetry of the molecule. Furthermore, the PTX3 octamer is shown to contain two FGF2 binding sites, where it is the tetramers that act as the functional units in ligand recognition. Thus, these studies provide a unifying model of the PTX3 oligomer, explaining both its quaternary organization and how this is required for its antiangiogenic function. © 2010 by The American Society for Biochemistry and Molecular Biology, Inc.

Cite

CITATION STYLE

APA

Inforzato, A., Baldock, C., Jowitt, T. A., Holmes, D. F., Lindstedt, R., Marcellini, M., … Day, A. J. (2010). The angiogenic inhibitor long pentraxin PTX3 forms an asymmetric octamer with two binding sites for FGF2. Journal of Biological Chemistry, 285(23), 17681–17692. https://doi.org/10.1074/jbc.M109.085639

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free