Assessment of small-scale variability of rainfall and multisatellite precipitation estimates using a meso-rain gauge network measurements from southern peninsular India

  • Sunilkumar K
  • Narayana Rao T
  • Satheeshkumar S
N/ACitations
Citations of this article
13Readers
Mendeley users who have this article in their library.
Get full text

Abstract

This paper describes the establishment of a dense rain gauge network and small-scale variability in rain storms (both in space and time) over a complex hilly terrain in southeast peninsular India. Three years of high-resolution gauge measurements are used to evaluate 3 hourly rainfall and sub-daily variations of four widely used multisatellite precipitation estimates (MPEs). The network consists of 36 rain gauges arranged in a near-square grid area of 50 km × 50 km with an intergauge distance of ~ 10 km. Morphological features of rainfall in two principal monsoon seasons (southwest monsoon: SWM and northeast monsoon: NEM) show marked seasonal differences. The NEM rainfall exhibits significant spatial variability and most of the rainfall is associated with large-scale systems (in wet spells), whereas the contribution from small-scale systems is considerable in SWM. Rain storms with longer duration and copious rainfall are seen mostly in the western quadrants in SWM and northern quadrants in NEM, indicating complex spatial variability within the study region. The diurnal cycle also exhibits marked spatiotemporal variability with strong diurnal cycle at all the stations (except for 1) during the SWM and insignificant diurnal cycle at many stations during the NEM. On average, the diurnal amplitudes are a factor 2 larger in SWM than in NEM. The 24 h harmonic explains about 70 % of total variance in SWM and only ~ 30 % in NEM. The late night-mid night peak (20:00–02:00 LT) observed during the SWM is attributed to the propagating systems from the west coast during active monsoon spells. Correlograms with different temporal integrations of rainfall data (1, 3, 12, 24 h) show an increase in the spatial correlation with temporal integration, but the correlation remains nearly the same after 12 h of integration in both the monsoons. The 1 h resolution data shows the steepest reduction in correlation with intergauge distance and the correlation becomes insignificant after ~30 km in both monsoons. Evaluation of high-resolution rainfall estimates from various MPEs against the gauge rainfall indicates that all MPEs underestimate the weak and heavy rain. The MPEs exhibit good detection skills of rain at both 3 and 24 h resolutions, however, considerable improvement is observed at 24 h resolution. Among different MPEs, Climate Prediction Centre morphing technique (CMORPH) performs better at 3 hourly resolution in both monsoons. The performance of TRMM multisatellite precipitation analysis (TMPA) is much better at daily resolution than at 3 hourly, as evidenced by better statistical metrics than the other MPEs. All MPEs captured the basic shape of diurnal cycle and the amplitude quite well, but failed to reproduce the weak/insignificant diurnal cycle in NEM.

Cite

CITATION STYLE

APA

Sunilkumar, K., Narayana Rao, T., & Satheeshkumar, S. (2015). Assessment of small-scale variability of rainfall and multisatellite precipitation estimates using a meso-rain gauge network measurements from southern peninsular India. Hydrology and Earth System Sciences Discussions, 12(10), 10389–10429. https://doi.org/10.5194/hessd-12-10389-2015

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free