Bves modulates tight junction associated signaling

34Citations
Citations of this article
39Readers
Mendeley users who have this article in their library.

Abstract

Blood vessel epicardial substance (Bves) is a transmembrane adhesion protein that regulates tight junction (TJ) formation in a variety of epithelia. The role of TJs within epithelium extends beyond the mechanical properties. They have been shown to play a direct role in regulation of RhoA and ZONAB/DbpA, a y-box transcription factor. We hypothesize that Bves can modulate RhoA activation and ZONAB/DbpA activity through its regulatory effect on TJ formation. Immortalized human corneal epithelial (HCE) cells were stably transfected with Flag-tagged full length chicken Bves (w-Bves) or C-terminus truncated Bves (t-Bves). We found that stably transfected w-Bves and t-Bves were interacting with endogenous human Bves. However, interaction with t-Bves appeared to disrupt cell membrane localization of endogenous Bves and interaction with ZO-1. w-Bves cells exhibited increased TJ function reflected by increased trans-epithelial electrical resistance, while t-Bves cells lost TJ protein immunolocalization at cell-cell contacts and exhibited decreased trans-epithelial electrical resistance. In parental HCE and w-Bves cells ZONAB/DbpA and GEF-H1 were seen at cell borders in the same pattern as ZO-1. However, expression of t-Bves led to decreased membrane localization of both ZONAB/DbpA and GEF-H1. t-Bves cells had increased RhoA activity, as indicated by a significant 30% increase in FRET activity compared to parental HCE cells. ZONAB/DbpA transcriptional activity, assessed using a luciferase reporter probe, was increased in t-Bves cells. These studies demonstrate that Bves expression and localization can regulate RhoA and ZONAB/DbpA activity. © 2011 Russ et al.

Cite

CITATION STYLE

APA

Russ, P. K., Pino, C. J., Williams, C. S., Bader, D. M., Haselton, F. R., & Chang, M. S. (2011). Bves modulates tight junction associated signaling. PLoS ONE, 6(1). https://doi.org/10.1371/journal.pone.0014563

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free