Calibration and evaluation of a semi-distributed watershed model of Sub-Saharan Africa using GRACE data

52Citations
Citations of this article
122Readers
Mendeley users who have this article in their library.

Abstract

Irrigation development is rapidly expanding in mostly rainfed Sub-Saharan Africa. This expansion underscores the need for a more comprehensive understanding of water resources beyond surface water. Gravity Recovery and Climate Experiment (GRACE) satellites provide valuable information on spatio-temporal variability in water storage. The objective of this study was to calibrate and evaluate a semi-distributed regional-scale hydrologic model based on the Soil and Water Assessment Tool (SWAT) code for basins in Sub-Saharan Africa using seven-year (July 2002-April 2009) 10-day GRACE data and multi-site river discharge data. The analysis was conducted in a multi-criteria framework. In spite of the uncertainty arising from the tradeoff in optimising model parameters with respect to two non-commensurable criteria defined for two fluxes, SWAT was found to perform well in simulating total water storage variability in most areas of Sub-Saharan Africa, which have semi-arid and sub-humid climates, and that among various water storages represented in SWAT, water storage variations in soil, vadose zone and groundwater are dominant. The study also showed that the simulated total water storage variations tend to have less agreement with GRACE data in arid and equatorial humid regions, and model-based partitioning of total water storage variations into different water storage compartments may be highly uncertain. Thus, future work will be needed for model enhancement in these areas with inferior model fit and for uncertainty reduction in component-wise estimation of water storage variations. © 2012 Author(s).

Cite

CITATION STYLE

APA

Xie, H., Longuevergne, L., Ringler, C., & Scanlon, B. R. (2012). Calibration and evaluation of a semi-distributed watershed model of Sub-Saharan Africa using GRACE data. Hydrology and Earth System Sciences, 16(9), 3083–3099. https://doi.org/10.5194/hess-16-3083-2012

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free