A census of rotation and variability in L1495: A uniform analysis of Trans-atlantic Exoplanet Survey light curves for pre-main-sequence stars in Taurus

26Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

We analyze light curves obtained by the Trans-atlantic Exoplanet Survey (TrES) for a field centered on the L1495 dark cloud in Taurus. The Spitzer Taurus Legacy Survey catalog identifies 179 bona fide Taurus members within the TrES field; 48 of the known Taurus members are detected by TrES, as well as 26 candidate members identified by the Spitzer Legacy team. We quantify the variability of each star in our sample using the ratio of the standard deviation of the original light curve (σ orig.) to the standard deviation of a light curve that has been smoothed by 9 or 1001 epochs (σ 9 and σ 1001, respectively). Known Taurus members typically demonstrate (σ orig./σ 9) < 2.0, and (σ orig./σ 1001) < 5, while field stars reveal (σ orig./σ 9) ∼3.0 and (σ orig./σ 1001) ∼10, as expected for light curves dominated by unstructured white noise. Of the 74 Taurus members/candidates with TrES light curves, we detect significant variability in 49 sources. Adapting a quantitative metric originally developed to assess the reliability of transit detections, we measure the amount of red and white noise in each light curve and identify 18 known or candidate Taurus members with highly significant period measurements. These appear to be the first periods measured for four of these sources (HD 282276, CX Tau, FP Tau, TrES J042423+265008), and in two other cases, the first non-aliased periods (LkCa 21 and DK Tau AB). For the remainder, the TrES measurements typically agree very well (δP < 1%) with previously reported values. Including periods measured at lower confidence for 15 additional sources, we report periods for 11 objects where no previous periods were found, including 8 confirmed Taurus members. We also identify 10 of the 26 candidate Taurus members that demonstrate variability levels consistent with being bona fide TTauri stars. A Kolomgorov-Smirnov (K-S) test confirms that these new periods confirm the distinction between the rotation period distributions of stars with and without circumstellar disks, with only a 10% probability of the two populations sharing the same parent period distribution. K-S tests do suggest, however, that the updated Taurus period distribution now more closely resembles those measured in other young star-forming clusters (i.e., NGC2264, NGC6530, and the ONC). This improved agreement may reflect the exclusion of long rotation periods which are detected in Taurus at lower significance, and which may be beyond the limits of detectability in more distant star-forming regions. © 2012. The American Astronomical Society. All rights reserved.

Cite

CITATION STYLE

APA

Xiao, H. Y., Covey, K. R., Rebull, L., Charbonneau, D., Mandushev, G., O’Donovan, F., … Lloyd, J. P. (2012). A census of rotation and variability in L1495: A uniform analysis of Trans-atlantic Exoplanet Survey light curves for pre-main-sequence stars in Taurus. Astrophysical Journal, Supplement Series, 202(1). https://doi.org/10.1088/0067-0049/202/1/7

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free