Characterization and in vitro reaction properties of 19 unique hairpin telomeres from the linear plasmids of the lyme disease spirochete

31Citations
Citations of this article
29Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The genome of the Lyme disease pathogen Borrelia burgdorferi contains about a dozen linear DNA molecules that carry covalently closed hairpin telomeres as a specialized mechanism for dealing with the end-replication problem. The hairpin telomeres are generated from replicative intermediates through a two-step transesterification promoted by the telomere resolvase ResT. Although the genome of B. burgdorferi has been sequenced, the sequence of most telomeres has remained unknown because of difficulties in recovering and completely sequencing the covalently closed hairpin ends. In this study we report a new approach for the direct sequencing Borrelia telomeres and report the sequence, characterization, and in vitro reaction properties of 19 unique telomeres. Surprisingly, a variation of greater than 160-fold in the initial reaction rates of in vitro ResT-mediated telomere resolution was observed between the most active and least active telomeres. Moreover, three of the hairpin telomeres were completely inactive in vitro, but their in vivo functionality was demonstrated. Our results provide important new information on the structure and function of the B. burgdorferi telomeres and suggest the possibility that factors besides the telomere resolvase ResT may influence the reaction in vivo and rescue those telomeres that are not functional in vitro with ResT alone. © 2009 by The American Society for Biochemistry and Molecular Biology, Inc.

Cite

CITATION STYLE

APA

Tourand, Y., Deneka, J., Moriarty, T. J., & Chaconas, G. (2009). Characterization and in vitro reaction properties of 19 unique hairpin telomeres from the linear plasmids of the lyme disease spirochete. Journal of Biological Chemistry, 284(11), 7264–7272. https://doi.org/10.1074/jbc.M808918200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free