Chemical characterization of fine organic aerosol for source apportionment at Monterrey, Mexico

  • Mancilla Y
  • Mendoza A
  • Fraser M
  • et al.
ISSN: 1680-7375
N/ACitations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

Primary emissions from anthropogenic and biogenic sources as well as secondary formation are responsible for the pollution levels of ambient air in major urban areas. These sources release fine particles into the air that negatively impact human health and the environment. Organic molecular markers, which are compounds that are unique to specific PM2.5 sources, can be utilized to identify the major emission sources in urban areas. In this study, 43 representative PM2.5 samples, for both daytime and nighttime periods, were built from individual samples collected in an urban site of the Monterrey Metropolitan Area (MMA) during the spring and fall of 2011 and 2012. The samples were analyzed for organic carbon, elemental carbon, and organic molecular markers. Several diagnostic tools were employed for the preliminary identification of emission sources. Organic compounds for eight compound classes were quantified. The n-alkanoic acids were the most abundant, followed by n-alkanes, wood smoke markers, and levoglucosan/alkenoic acids. Polycyclic aromatic hydrocarbons (PAHs) and hopanes were less abundant. The carbon preference index (0.7–2.6) for n-alkanes indicate a major contribution of anthropogenic and mixed sources during the fall and the spring, respectively. Hopanes levels confirmed the contribution from gasoline and diesel engines. In addition, the contribution of gasoline and diesel vehicle exhaust was confirmed and identified by the PAH concentrations in PM2.5. Diagnostic ratios of PAH showed emissions from burning coal, wood, biomass, and other fossil fuels. The total PAH and elemental carbon (EC) were correlated (r2 = 0.39–0.70) across the monitoring periods, reinforcing that motor vehicles are the major contributors of PAH. Cholesterol levels remained constant during the spring and fall, showing evidence of the contribution of meat cooking operations, while the isolated concentrations of levoglucosan suggested occasional biomass burning events. Finally, source attribution results obtained using the CMB model indicate that emissions from motor vehicle exhausts are the most important, accounting for the 64 % of the PM2.5. The vegetative detritus and biomass burning had the smallest contribution (2.2 % of the PM2.5). To our knowledge, this is the second study to explore the broad chemical characterization of fine organic aerosol in Mexico and the first for the MMA.

Cite

CITATION STYLE

APA

Mancilla, Y., Mendoza, A., Fraser, M. P., & Herckes, P. (2015). Chemical characterization of fine organic aerosol for source apportionment at Monterrey, Mexico. Atmos. Chem. Phys. Discuss. (Vol. 15, pp. 17967–18010). Retrieved from http://www.atmos-chem-phys-discuss.net/15/17967/2015/

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free