Circadian disruption and metabolic disease: Findings from animal models

139Citations
Citations of this article
226Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Social opportunities and work demands have caused humans to become increasingly active during the late evening hours, leading to a shift from the predominantly diurnal lifestyle of our ancestors to a more nocturnal one. This voluntarily decision to stay awake long into the evening hours leads to circadian disruption at the system, tissue, and cellular levels. These derangements are in turn associated with clinical impairments in metabolic processes and physiology. The use of animal models for circadian disruption provides an important opportunity to determine mechanisms by which disorganization in the circadian system can lead to metabolic dysfunction in response to genetic, environmental, and behavioral perturbations. Here we review recent key animal studies involving circadian disruption and discuss the possible translational implications of these studies for human health and particularly for the development of metabolic disease. © 2010 Published by Elsevier Ltd.

Cite

CITATION STYLE

APA

Arble, D. M., Ramsey, K. M., Bass, J., & Turek, F. W. (2010, October). Circadian disruption and metabolic disease: Findings from animal models. Best Practice and Research: Clinical Endocrinology and Metabolism. https://doi.org/10.1016/j.beem.2010.08.003

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free