Co-immobilization of P450 BM3 and glucose dehydrogenase on different supports for application as a self-sufficient oxidative biocatalyst

23Citations
Citations of this article
49Readers
Mendeley users who have this article in their library.
Get full text

Abstract

BACKGROUND: The oxy-functionalization of non-activated carbon bonds by the bacterial cytochrome P450 BM3 from Bacillus megaterium, presents a promising field in biosynthesis and it has gained much interest in recent decades. Nevertheless, the need for the expensive cofactor NADPH, together with low operational stability of the enzyme have made the implementation of this biocatalyst unfeasible in most cases for industry. RESULTS: P450 BM3 and glucose dehydrogenase (GDH), as a cofactor regeneration enzyme, were successfully co-immobilized obtaining a bi-functional self-sufficient oxidative biocatalyst. First, a broad screening of 13 different supports was carried out. Five selected agaroses with three different functionalities (epoxy, amine and aldehyde) were studied and their immobilization processes optimized. Finally, P450 BM3 and GDH were co-immobilized on those supports showing the best performance for P450 BM3 immobilization: epoxy-agarose (epoxy-agarose-UAB) presenting 83% and 20% retained activities respectively; AMINO-agarose presenting 28% and 25%, and Lentikats® with which both enzymes retained 100% of the initial activity. Furthermore, the re-utilization of the self-sufficient immobilized derivatives was tested in five repeated cycles. CONCLUSIONS: P450 BM3 and GDH have been successfully immobilized on three supports and their re-usability has been tested in a model reaction. It represents a step forward for future P450 BM3 industrial implementations. © 2018 Society of Chemical Industry.

Cite

CITATION STYLE

APA

Solé, J., Caminal, G., Schürmann, M., Álvaro, G., & Guillén, M. (2019). Co-immobilization of P450 BM3 and glucose dehydrogenase on different supports for application as a self-sufficient oxidative biocatalyst. Journal of Chemical Technology and Biotechnology, 94(1), 244–255. https://doi.org/10.1002/jctb.5770

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free