The contribution of respiration in tree stems to the Dole Effect

6Citations
Citations of this article
37Readers
Mendeley users who have this article in their library.

Abstract

Understanding the variability and the current value of the Dole Effect, which has been used to infer past changes in biospheric productivity, requires accurate information on the isotopic discrimination associated with respiratory oxygen consumption in each of the biosphere components. Respiration in tree stems is an important component of the land carbon cycle. Here we measured, for the first time, the discrimination associated with tree stem oxygen uptake. The measurements included tropical forest trees, which are major contributors to the global fluxes of carbon and oxygen. We found discrimination in the range of 12.6-21.5g‰, indicating both diffusion limitation, resulting in O2 discrimination values below 20g‰, and alternative oxidase respiration, which resulted in discrimination values greater than 20g‰. Discrimination varied seasonally, between and within tree species. Calculations based on these results show that variability in woody plants discrimination can result in significant variations in the global Dole Effect. © 2012 Author(s).

Cite

CITATION STYLE

APA

Angert, A., Muhr, J., Juarez, R. N., Munoz, W. A., Kraemer, G., Santillan, J. R., … Trumbore, S. E. (2012). The contribution of respiration in tree stems to the Dole Effect. Biogeosciences, 9(10), 4037–4044. https://doi.org/10.5194/bg-9-4037-2012

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free