CO 2 exchange in a temperate marginal sea of the Mediterranean Sea: processes and carbon budget

  • Cossarini G
  • Querin S
  • Solidoro C
ISSN: 1810-6285
N/ACitations
Citations of this article
15Readers
Mendeley users who have this article in their library.

Abstract

Abstract. Marginal seas play a potentially important role in the global carbon cycle; however, due to differences in the scales of variability and dynamics, marginal seas are seldom fully accounted for in global models or estimates. Specific high-resolution studies may elucidate the role of marginal seas and assist in the compilation of a complete global budget. In this study, we investigated the air-sea exchange and the carbon cycle dynamics in a marginal sub-basin of the Mediterranean Sea (the Adriatic Sea) by adopting a coupled transport-biogeochemical model of intermediate complexity including carbonate dynamics. The Adriatic Sea is a highly productive area owed to riverine fertilisation and is a site of intense dense water formation both on the northern continental shelf and in the southern sub-basin. Therefore, the study area may be an important site of CO 2 sequestration in the Mediterranean Sea. The results of the model simulation show that the Adriatic Sea, as a whole, is a CO 2 sink with a mean annual flux of 36 mg m −2 day −1. The northern part absorbs more carbon (68 mg m −2 day −1) due to an efficient continental shelf pump process, whereas the southern part behaves similar to an open ocean. Nonetheless, the Southern Adriatic Sea accumulates dense, southward-flowing, carbon-rich water produced on the northern shelf. During a warm year and despite an increase in aquatic primary productivity, the sequestration of atmospheric CO 2 is reduced by approximately 15% due to alterations of the solubility pump and reduced dense water formation. The seasonal cycle of temperature and biological productivity modulates the efficiency of the carbon pump at the surface, whereas the intensity of winter cooling in the northern sub-basin leads to the export of C-rich dense water to the deep layer of the southern sub-basin and, subsequently, to the interior of the Mediterranean Sea.

Cite

CITATION STYLE

APA

Cossarini, G., Querin, S., & Solidoro, C. (2012). CO 2 exchange in a temperate marginal sea of the Mediterranean Sea: processes and carbon budget. Biogeosciences Discussions, 9(8), 10331–10370.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free