Determination and climatology of the planetary boundary layer height above the Swiss plateau by in situ and remote sensing measurements as well as by the COSMO-2 model

118Citations
Citations of this article
136Readers
Mendeley users who have this article in their library.

Abstract

The planetary boundary layer (PBL) height is a key parameter in air quality control and pollutant dispersion. The PBL height cannot, however, be directly measured, and its estimation relies on the analysis of the vertical profiles of the temperature, turbulence or the atmospheric composition. An operational PBL height detection method including several remote sensing instruments (wind profiler, Raman lidar, microwave radiometer) and several algorithms (Parcel and bulk Richardson number methods, surface-based temperature inversion, aerosol or humidity gradient analysis) was developed and tested with 1 year of measurements, which allows the methods to be validated against radio sounding measurements. The microwave radiometer provides convective boundary layer heights in good agreement with the radio sounding (RS) (median bias < 25 m, R2 > 0.70) and allows the analysis of the diurnal variation of the PBL height due to its high temporal resolution. The Raman lidar also leads to a good agreement with RS, whereas the wind profiler yields some more dispersed results mostly due to false attribution problems. A comparison with the numerical weather prediction model COSMO-2 has shown a general overestimation of the model PBL height by some hundreds to thousand meters. Finally the seasonal cycles of the daytime and nighttime PBL heights are discussed for each instrument and each detection algorithm for two stations on the Swiss plateau.

Cite

CITATION STYLE

APA

Collaud Coen, M., Praz, C., Haefele, A., Ruffieux, D., Kaufmann, P., & Calpini, B. (2014). Determination and climatology of the planetary boundary layer height above the Swiss plateau by in situ and remote sensing measurements as well as by the COSMO-2 model. Atmospheric Chemistry and Physics, 14(23), 13205–13221. https://doi.org/10.5194/acp-14-13205-2014

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free