Diarylureas Containing 5-Membered Heterocycles as CB 1 Receptor Allosteric Modulators: Design, Synthesis, and Pharmacological Evaluation

7Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Allosteric modulators have attracted significant interest as an alternate strategy to modulate CB 1 receptor signaling for therapeutic benefits that may avoid the adverse effects associated with orthosteric ligands. Here we extended our previous structure-activity relationship studies on the diarylurea-based CB 1 negative allosteric modulators (NAMs) by introducing five-membered heterocycles to replace the 5-pyrrolidinylpyridinyl group in PSNCBAM-1 (1), one of the first generation CB 1 allosteric modulators. Many of these compounds had comparable potency to 1 in blocking the CB 1 agonist CP55,940 stimulated calcium mobilization and [ 35 S]GTP-γ-S binding. Similar to 1, most compounds showed positive cooperativity by increasing [ 3 H]CP55,940 binding, consistent with the positive allosteric modulator (PAM)-antagonist mechanism. Interestingly, these compounds exhibited differences in ability to increase specific binding of [ 3 H]CP55,940 and decrease binding of the antagonist [ 3 H]SR141716. In saturation binding studies, only increases in [ 3 H]CP55,940 B max , but not K d , were observed, suggesting that these compounds stabilize low affinity receptors into a high affinity state. Among the series, the 2-pyrrolyl analogue (13) exhibited greater potency than 1 in the [ 35 S]GTP-γ-S binding assay and significantly enhanced the maximum binding level in the [ 3 H]CP5,5940 binding assay, indicating greater CB 1 receptor affinity and/or cooperativity.

Cite

CITATION STYLE

APA

Nguyen, T., Gamage, T. F., Decker, A. M., German, N., Langston, T. L., Farquhar, C. E., … Zhang, Y. (2019). Diarylureas Containing 5-Membered Heterocycles as CB 1 Receptor Allosteric Modulators: Design, Synthesis, and Pharmacological Evaluation. ACS Chemical Neuroscience, 10(1), 518–527. https://doi.org/10.1021/acschemneuro.8b00396

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free