The distribution of soil phosphorus for global biogeochemical modeling

174Citations
Citations of this article
291Readers
Mendeley users who have this article in their library.

Abstract

Phosphorus (P) is a major element required for biological activity in terrestrial ecosystems. Although the total P content in most soils can be large, only a small fraction is available or in an organic form for biological utilization because it is bound either in incompletely weathered mineral particles, adsorbed on mineral surfaces, or, over the time of soil formation, made unavailable by secondary mineral formation (occluded). In order to adequately represent phosphorus availability in global biogeochemistry-climate models, a representation of the amount and form of P in soils globally is required. We develop an approach that builds on existing knowledge of soil P processes and databases of parent material and soil P measurements to provide spatially explicit estimates of different forms of naturally occurring soil P on the global scale. We assembled data on the various forms of phosphorus in soils globally, chronosequence information, and several global spatial databases to develop a map of total soil P and the distribution among mineral bound, labile, organic, occluded, and secondary P forms in soils globally. The amount of P, to 50cm soil depth, in soil labile, organic, occluded, and secondary pools is 3.6±3, 8.6±6, 12.2± 8, and 3.2±2PgP(Petagrams of P, 1Pg= 1 × 1015g) respectively. The amount in soil mineral particles to the same depth is estimated at 13.0 ± 8PgP for a global soil total of 40.6 ± 18 Pg P. The large uncertainty in our estimates reflects our limited understanding of the processes controlling soil P transformations during pedogenesis and a deficiency in the number of soil P measurements. In spite of the large uncertainty, the estimated global spatial variation and distribution of different soil P forms presented in this study will be useful for global biogeochemistry models that include P as a limiting element in biological production by providing initial estimates of the available soil P for plant uptake and microbial utilization. © Author(s) 2013.

Cite

CITATION STYLE

APA

Yang, X., Post, W. M., Thornton, P. E., & Jain, A. (2013). The distribution of soil phosphorus for global biogeochemical modeling. Biogeosciences, 10(4), 2525–2537. https://doi.org/10.5194/bg-10-2525-2013

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free