Sign up & Download
Sign in

Evaluating the degree of oxygenation of organic aerosol during foggy and hazy days in Hong Kong using high-resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS)

by Y. J. Li, B. Y L Lee, J. Z. Yu, N. L. Ng, C. K. Chan
Atmospheric Chemistry and Physics ()


The chemical characteristics of organic aerosol (OA) are still poorly constrained. Here we present observation results of the degree of oxygenation of OA based on high-resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS) measurements made at a coastal site in Hong Kong from late April to the end of May in 2011. Two foggy periods and one hazy period were chosen for detailed analysis to compare the changes in the degree of oxygenation of OA due to different processes. Using HR-ToF-AMS measured inorganic species as input, the Extended Aerosol Inorganic Model (E-AIM) predicted a fine-particle liquid water content (LWCfp) up to 85 mu g m(-3) during the foggy days. Particle concentration as measured by HR-ToF-AMS was up to 60 mu g m(-3) during the hazy days and up to 30 mu g m(-3) during the foggy days. The degree of oxygenation of OA, as indicated by several parameters including the fraction of m/z 44 in organic mass spectra (f(44)), the elemental ratio of oxygen to carbon (O:C), and the carbon oxidation state ((OS) over bar (c)), was evaluated against the odd oxygen (O-x) concentration, LWCfp, ionic strength (IS), and in situ pH (pH(is)). Observations suggest that the high concentration of OA (on average 11 mu g m(-3)) and the high degree of oxygenation (f(44) = 0.15, O:C=0.51, and (OS) over bar (c)=-0.31) during the hazy period were mainly due to gas-phase oxidation. During the foggy periods with low photochemical activities, the degree of oxygenation of OA was almost as high as that on the hazy days, and significantly higher than that during non-foggy/non-hazy days. However, the OA evolved quite differently in the two foggy periods. The first foggy period in late April saw a larger LWCfp and a lower O-x concentration and the OA were made up of similar to 20% semi-volatile oxygenated organic aerosol (SVOOA) as resolved by positive matrix factorization (PMF). In the second foggy period in mid-May, higher O-x concentration and lower LWCfp were observed, and the OA were found to contain > 50% low-volatility oxygenated organic aerosols (LVOOA). An examination of the particle characteristics (pH(is), IS, and LWCfp) suggests that partitioning may have been the dominating process through which oxygenated species were incorporated into the particle phase during the first foggy period, while oxidation in the aqueous phase dominated over gas-phase processes during the second foggy period.

Cite this document (BETA)

Readership Statistics

10 Readers on Mendeley
by Discipline
by Academic Status
50% Ph.D. Student
10% Other Professional
10% Doctoral Student
by Country
10% United States

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Already have an account? Sign in