The evolution of land plant hemoglobins

45Citations
Citations of this article
91Readers
Mendeley users who have this article in their library.
Get full text

Abstract

This review discusses the evolution of land plant hemoglobins within the broader context of eukaryote hemoglobins and the three families of bacterial globins. Most eukaryote hemoglobins, including metazoan globins and the symbiotic and non-symbiotic plant hemoglobins, are homologous to the bacterial 3/3-fold flavohemoglobins. The remaining plant hemoglobins are homologous to the bacterial 2/2-fold group 2 hemoglobins. We have proposed that all eukaryote globins were acquired via horizontal gene transfer concomitant with the endosymbiotic events responsible for the origin of mitochondria and chloroplasts. Although the 3/3 hemoglobins originated in the ancestor of green algae and plants prior to the emergence of embryophytes at about 450mya, the 2/2 hemoglobins appear to have originated via horizontal gene transfer from a bacterium ancestral to present day Chloroflexi. Unlike the 2/2 hemoglobins, the evolution of the 3/3 hemoglobins was accompanied by duplication, diversification, and functional adaptations. Duplication of the ancestral plant nshb gene into the nshb-1 and nshb-2 lineages occurred prior to the monocot-dicot divergence at ca. 140mya. It was followed by the emergence of symbiotic hemoglobins from a non-symbiotic hemoglobin precursor and further specialization, leading to leghemoglobins in N2-fixing legume nodules concomitant with the origin of nodulation at ca. 60mya. The transition of non-symbiotic to symbiotic hemoglobins (including to leghemoglobins) was accompanied by the alteration of heme-Fe coordination from hexa- to penta-coordination. Additional genomic information about Charophyte algae, the sister group to land plants, is required for the further clarification of plant globin phylogeny. © 2012 Elsevier Ireland Ltd.

Cite

CITATION STYLE

APA

Vázquez-Limón, C., Hoogewijs, D., Vinogradov, S. N., & Arredondo-Peter, R. (2012, August). The evolution of land plant hemoglobins. Plant Science. https://doi.org/10.1016/j.plantsci.2012.04.013

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free