Formation of gas-phase carbonyls from heterogeneous oxidation of polyunsaturated fatty acids at the air-water interface and of the sea surface microlayer

59Citations
Citations of this article
74Readers
Mendeley users who have this article in their library.

Abstract

Motivated by the potential for reactive heterogeneous chemistry occurring at the ocean surface, gas-phase products were observed when a reactive sea surface microlayer (SML) component, i.e. the polyunsaturated fatty acids (PUFA) linoleic acid (LA), was exposed to gas-phase ozone at the air-seawater interface. Similar oxidation experiments were conducted with SML samples collected from two different oceanic locations, in the eastern equatorial Pacific Ocean and from the west coast of Canada. Online proton-transfer-reaction mass spectrometry (PTR-MS) University of Colorado light-emitting diode cavity-enhanced differential optical absorption spectroscopy (LED-CE-DOAS) were used to detect oxygenated gas-phase products from the ozonolysis reactions. The LA studies indicate that oxidation of a PUFA monolayer on seawater gives rise to prompt and efficient formation of gas-phase aldehydes. The products are formed via the decomposition of primary ozonides which form upon the initial reaction of ozone with the carbon-carbon double bonds in the PUFA molecules. In addition, two highly reactive dicarbonyls, malondialdehyde (MDA) and glyoxal, were also generated, likely as secondary products. Specific yields relative to reactant loss were 78%, 29%, 4% and < 1% for n-hexanal, 3-nonenal, MDA and glyoxal, respectively, where the yields for MDA and glyoxal are likely lower limits. Heterogeneous oxidation of SML samples confirm for the first time that similar carbonyl products are formed via ozonolysis of environmental samples. © Author(s) 2014. CC Attribution 3.0 License.

Cite

CITATION STYLE

APA

Zhou, S., Gonzalez, L., Leithead, A., Finewax, Z., Thalman, R., Vlasenko, A., … Abbatt, J. (2014). Formation of gas-phase carbonyls from heterogeneous oxidation of polyunsaturated fatty acids at the air-water interface and of the sea surface microlayer. Atmospheric Chemistry and Physics, 14(3), 1371–1384. https://doi.org/10.5194/acp-14-1371-2014

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free